Calculating Thermal Energy

$Q=$ Thermal energy (J)
$m=$ mass

Name \qquad
$T=$ temperature $\left({ }^{\circ} \mathrm{C}\right)$
$c_{p}=$ Specific Heat (J/kg)

$$
\begin{array}{ll}
Q=m c \Delta T & m=\frac{Q}{c \Delta T} \\
c=\frac{Q}{m \Delta T} & \Delta T=\frac{Q}{m c}
\end{array}
$$

1. What is the change in the thermal energy of 100 grams of water if its temperature increases from $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$?
2. What is the mass of a pane of glass that changed temperature by ten degrees Celsius and has a change in thermal energy of $-13,280.0$ Joules?
3. If 500 grams of graphite and 500 grams of Iron both have an initial temperature of $10^{\circ} \mathrm{C}$ and both have an increase in thermal energy of 7000 J , which will have the higher final temperature?
4. If 225 grams of wood with an initial temperature of $40^{\circ} \mathrm{C}$ has a change in thermal energy of $1.98 \times 10^{6} \mathrm{~J}$, what is the final temperature of the wood?
5. A 2.5 kg sample of a substance was heated from $113^{\circ} \mathrm{C}$ to $289^{\circ} \mathrm{C}$. The substance absorbed 0.45 kJ of heat. What is the specific heat of this substance? (Convert kg to grams and kJ to J first.)
6. The specific heat of aluminum is $0.897 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$. If a 22.6 g sample of aluminum is heated from 183 K to 244 K , then how much heat will the aluminum absorb? (Remember that we can use ${ }^{\circ} \mathrm{C}$ or K because a Δ in 1 degree of either scale is the same change.)
7. 1.3 kg of a substance is heated from 269 K to 325 K and is found to have absorbed 45 J of heat. What is the specific heat of this substance? (Convert kg to grams first.)
8. The specific heat of mercury is $0.140 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$. If 450 J of energy is added to 43 g of mercury at 315 K , what will the final temperature of the mercury be?
9. A 40.0 g sample of ethanol releases 2952 J as it cools from $50.0^{\circ} \mathrm{C}$. Calculate the final temperature of the ethanol.
10. Calculate the heat change associated with cooling a 350.0 g aluminum bar from $70.0^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$. Is the change endothermic or exothermic? Why?
11. Calculate the specific heat capacity (c_{p}) of copper given that 204.75 J of energy raises the temperature of 15.0 g of copper from $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
