Jame:	Per:
	· O. ·

Worksheet- Nuclear Decay

 $\underline{\textbf{Instructions:}} \hspace{0.2cm} \textbf{Fill in the table below and then use it to figure out what is happening during each type of} \\$

decay- - alpha (a), beta (B), and gamma (Y)

Parent Isotope	Particle emitted	New, Daughter isotope	Alpha, Beta, or gamma Decay?	# of protons lost or gained by "parent"	Change in mass number
$a. {}^{226}_{88}Ra \rightarrow {}^{4}_{2}He + {}^{222}_{86}Rn$			Alpha	Lost 2	minus 4
$b.\frac{214}{84}Po \rightarrow \frac{4}{2}He + \frac{210}{82}Pb$					
$c. {}^{47}_{20}Ca \rightarrow {}^{0}_{-1}e - + {}^{47}_{21}Sc$					
$d{64}^{148}Gd \rightarrow {}_{2}^{4}He + {}_{62}^{144}Sm$					
$e_{.} {}^{14}C$ -	$\rightarrow {}^{0}_{-1}e - +$	$-\frac{14}{7}N$			
$f_{.64}^{148}Gd \rightarrow {}^{0}_{0}Y + {}^{148}_{64}Gd$					

- 2. What changes take place in the nucleus when an alpha particle is emitted?
- 3. What is the identity of an alpha particle?
- 4. What changes take place in the nucleus when a beta particle is emitted?
- 5. Which particle is associated with beta decay?

6. Fill in the missing parts of these nuclear reactions: (numbers & elements)

	b) $\rightarrow_2^4 He +_{88}^{226} Ra$	
d) $^{238}_{92}U \rightarrow_2^4 He +$	e) $^{110}_{53}I \rightarrow ___+^{106}_{51}Sb+^{0}_{0}Y$	f) ${}^{140}_{56}Ba \rightarrow \underline{\qquad} + {}^{140}_{57}La$

- 7. Show: a) The alpha (a) decay of radon- 198
- b) The beta (β)decay of uranium-237
- 8. Plutonium- 244 undergoes gamma decay. What are the products of this reaction?
- 9. Does the identity of an atom change during radioactive decay? Why or why not?
- 10. List the 3 types of radiation (a, β, γ) in order from least penetrating to most penetrating.
- 11. What is mass defect and why is it important?
- 12. What is the difference between nuclear fusion and nuclear fission?