\qquad
\qquad

Do this assignment in order, don't skip ahead and work in pencil!!!

Before you begin, define the following:

Avogadro's Number:

Mole (abbreviated mol):

Molar Mass:

Introduction: (Read all of this carefully)

Chemists need a way to talk about amounts of atoms, ions, molecules or formula units of compounds. We could talk about a dozen atoms. Everyone knows that a dozen of anything contains 12 of that item. Do you know how many a baker's dozen is equal to? (FYI, a baker's dozen is 13 of something.) How many shoes in a pair of shoes? Did you know that a gross is the term for a dozen dozens (or 144 of something). A ream of printer paper has 500 sheets of paper. These terms: pair, dozen, bakers dozen, gross and ream all indicate a specific number. If we wanted to talk about atoms, ions, molecules, etc in chemistry we could use these terms, but in reality it is not practical to talk about a dozen atoms or a ream of atoms. Atoms are so small, we need a larger number to talk about atoms. That is why Amedeo Avogadro's contribution to chemistry is so EPIC. Avogadro gave us Avogadro's number. Avogadro's number represents how much is in a mole. Just like a dozen is equal to 12 , Avogadro's number is equal to $602,214,130,000,000,000,000,000.0$ of anything. You could have a dozen donuts or a mole of donuts. A mole is simply an amount. Since the value of a mole is such a large number, we can shorten it using scientific notation to 6.022×10^{23}. So if you have 1.00 moles of sodium atoms, you would have $6.022 \times 10^{23} \mathrm{Na}$ atoms. If you have 1 mole of golf balls, you have 6.022×10^{23} golf balls. The term mole works great for atoms, ions, molecules, and formula units because these particles are so small.

Section 1: How many atoms in the following amounts?

1. 1.00 moles of jolly rancher candy pieces = \qquad jolly rancher candy pieces
2. 1.00 moles of Mg atoms $=$ \qquad
3. 1.0000 moles of Cl atoms $=$ \qquad
4. 1.0 moles of Ca atoms $=$ \qquad
5. 1 moles of Argon atoms $=$ \qquad
6. 1.0 moles of Water molecules = \qquad

Get the point?
1 mole of any substance is equal to 6.022×10^{23} atoms of that substance...No matter what the substance is.

Introduction Part II: (Read all of this carefully)

Which weighs more, a pound of feathers or a pound of bricks? Trick question, right? They both weight the same amount. Which weighs more a dozen feathers or a dozen bricks? Wait a minute..... 12 bricks weigh more than 12 feathers all day, every day.

Which weighs more, a dozen helium atoms (He) or a dozen iron atoms (Fe)? Consult the periodic table and see that iron ($\sim 56 \mathrm{amu}$) has more mass than helium ($\sim 4 \mathrm{amu}$). Therefore, a dozen iron atoms are much heavier than a dozen helium atoms.

Which weighs more, a mole of helium atoms or a mole of iron atoms? Which weighs more 6.022×10^{23} helium atoms or 6.022×10^{23} iron atoms? It should be obvious that if you have a mole of helium and a mole of iron, the iron has more mass (by a lot).

The Periodic Table of elements tells us the molar mass of elements. Be careful and don't get confused through. The periodic table tells us two things about every element: (We will use iron for an example.)

1. An individual iron (Fe) atom has an atomic mass of 55.845 amu (atomic mass units).
2. A mole of iron (Fe) atoms have a molar mass of $55.845 \mathrm{~g} / \mathrm{mol}$ (grams "per" mol)

Notice that the number is the same (from the PT), but the units are different. In example \#1, 55.845 is the amu (atomic mass unit) mass of 1 atom of iron, and in \#2, 55.845 is the mass in grams per $\mathrm{mol}(\mathrm{g} / \mathrm{mol})$ of 1 mol of iron atoms (6.022×10^{23} atoms of iron to be exact.)

Section 2: What is the mass of the following quantities? (Use the STARR Periodic Table, and DON'T Round)
7. What is the mass of 1 tungsten atom? \qquad (Be careful with units: amu or $\mathrm{g} / \mathrm{mol}$?)
8. What is the mass of 1.0 mole of nickel? \qquad
9. What is the mass of 1 tin atom? \qquad
10. What is the mass of 1.0 mole of tin? \qquad
11. What is the mass of 1.0 mole of Al? \qquad
12. What is the mass of 1 Al atom? \qquad
13. What is the mass of 1.00 mol of potassium? \qquad
14. What is the mass of 1.000 mole of uranium? \qquad

We call the mass of one mol of a substance the molar mass.

Get the point?
You can determine the mass of 1 atom or 1 mole from the Periodic Table of Elements. Be careful of units!

Introduction Part III: (Read all of this carefully)

So now we know a mole is an amount. A mole of anything contains Avogadro's number of things. (Remember that Avogadro's number is 6.022×10^{23}). We also know the mass of a mole, AKA the molar mass, by looking up that substance in the periodic table.

The tricky thing is that we rarely ever have one mole or exactly 6.022×10^{23} of anything. So we have to do conversions using the mole. These conversions will cause us to have to use dimensional analysis.

I realize that dimensional analysis may give you nightmares, but... its back. I told you we would use it all year! Remember with dimensional analysis, you must work with quantities that are equal. We just learned 2 quantities that are always equal:

$$
\text { How many: } \quad 1 \mathrm{~mol} \quad=6.022 \times 10^{23} \text { atoms }
$$

How massive: $1 \mathrm{~mol} \quad \ldots \quad=$ the molar mass on the PT

Molar Conversions: (Show all your steps, set up all your work \& include units)
15. How many aluminum atoms in 1.5 moles of aluminum?

Dimensional Analysis Refresher:

1. Write the quantity you know you start with.
2. Set up the lines.
3. Place equalities so that the units cancel top to bottom.
4. Plug \& Solve.
5. Remember to divide the product of the top by the product of the entire bottom.
6. How many moles of potassium are present in a sample of 8.12×10^{25} atoms of K?
7. If you have a sample containing 0.75 moles of beryllium, how many atoms are present?
8. What is the mass of a 2.5 mol sample of manganese (Mn) ?
9. A partial roll of 1981 pennies (made from solid copper) has a mass of 45.5 grams. How many moles of Cu are present?
10. What is the mass of 3.5 moles of lead?
11. How many mols of xenon are present in a sample of Xe containing 8.12×10^{25} atoms?
12. In 1945, the United States used a nuclear weapon over Hiroshima, Japan in an effort to end World War II. The "little boy" bomb contained 64 kg of uranium-235. How many moles of ${ }^{235} \mathrm{U}$ were used in that bomb? (Hint, don't look at U on the PT, you are using the mass of an isotope of uranium. Also, kilograms are not your preferred unit.)
13. Now that you know how many moles of uranium- 235 were used in that bomb, how many uranium- 235 isotope particles were in the bomb?
14. A fishing sinker (AKA: a weight to hold the line underwater) has 9.8×10^{22} atoms of lead in it. How many moles of lead are present?
15. How many grams is the fishing weight from \#24.
