\qquad

1. Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, is a gas that is sometimes used as a fuel for cooking and heating. The complete combustion of propane occurs according to the following equation.

$$
\mathrm{C}_{3} \mathrm{H}_{8(g)}+\mathbf{5} \mathrm{O}_{2(g)} \rightarrow \mathbf{3} \mathrm{CO}_{2(g)}+\mathbf{4} \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

a. What will be the volume, in liters, of oxygen required for the complete combustion of 0.350 L of propane?
b. What will be the volume of carbon dioxide produced in the reaction of 0.350 L propane?
c. What volume of water vapor will form if 22.4 L (1 mole) of propane is used?
d. How much oxygen is consumed if 9.50 L of carbon dioxide was formed?
e. What is the mole ratio of propane to carbon dioxide?
2. Hydrogen combines with oxygen to form water.

$$
\mathbf{2} \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}
$$

a. Assuming all volume measurements are made at the same temperature and pressure, what volume of hydrogen gas is needed to react completely with 4.55 L of oxygen gas to produce water vapor.
b. If you are going to make a mole of water vapor (22.4L), how much hydrogen would you need to start with?
c. What is the mole ratio of hydrogen to water?
d. If you have unlimited hydrogen and $34.0 \mathrm{LO}_{2}$, what volume of water vapor could you create?
3. Carbon monoxide combines with gaseous oxygen to form carbon dioxide.

$$
\mathbf{2 C O}+\mathrm{O}_{2} \rightarrow \mathbf{2 \mathrm { CO } _ { 2 }}
$$

a. What volume of oxygen gas is needed to react completely with 0.626 L of carbon monoxide gas, CO, to form gaseous carbon dioxide?
b. If 40.5 L of CO are reacted with unlimited oxygen, how much carbon dioxide will form?
c. This reaction formed 11.2 moles of carbon dioxide gas. How many moles of oxygen were used?
4. Use the combined gas law to solve the following problems:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

a. If I initially have a gas at a pressure of 6 atm, a volume of 19 liters, and a temperature of 250 K , and then I raise the pressure to 7 atm and increase the temperature to 325 K , what is the new volume of the gas?
b. If I have 15 liters of gas at a temperature of $77^{\circ} \mathrm{C}$ and a pressure of 92 atm , what will be the pressure of the gas if I raise the temperature to $104{ }^{\circ} \mathrm{C}$ and decrease the volume to 9 liters?
c. If I have 8 L of gas at a pressure of 7 atm and a temperature of $60^{\circ} \mathrm{C}$, what will be the temperature of the gas if I decrease the volume of the gas to 3.6 L and decrease the pressure to 1.9 atm ?

