Mole Conversions with Compounds

IN	а	m	e.

We previously studied mole conversions using individual atoms. The mole concept also applies to formulas. One mole of any compound is equal to 6.022×10^{23} particles (*formula units* for ionic compounds, or *molecules* for covalent compounds.) You can also find the mass of a mole of a compound by calculating the gram formula mass (AKA molar mass of the compound).

Show all work on separate paper: (Hint: The gram formula masses of these compounds are on your "counting atoms & Gram Formula Mass" assignment.)

- 1. Find the number of moles in each of the following masses. Answer to the correct amount of sig figs.
 - a. 64.1 g of Fe₂O₃
 - b. $78.1 \text{ g of } CaCl_2$
 - c. 546 g of K_2SO_3
 - d. 35.2 g of H₂O₂
- 2. Find the mass of each of the following compounds given the quantity in moles:
 - a. 1.22 mol potassium permanganate (KMnO₄)
 - b. 2.44 mol Potassium nitrate (KNO₃)
 - c. 14.5 mol aluminum sulfate (Al₂(SO₄)₃)
 - d. 9.37×10^{-2} mol copper(II) nitrate (Cu(NO₃)₂)
- 3. Find the number of moles:
 - a. 3.01×10^{23} ammonium bromide particles (NH₄Br)
 - b. 8.08×10^{22} molecules of C₂H₆
 - c. 7.41 x 10²³ sodium chloride (NaCl) formula units.
 - d. 200.0 g sodium chloride (NaCl)
- 4. Find the number of particles, molecules, or formula units:
 - a. 1.004 mol sodium acetate (NaC₂H₃O₂)
 - b. 2.5 mol potassium sulfite (K₂SO₃)
 - c. 94.0 g NaCl formula units
 - d. 69.45 g H₃PO₄