\qquad

We previously studied mole conversions using individual atoms. The mole concept also applies to formulas. One mole of any compound is equal to 6.022×10^{23} particles (formula units for ionic compounds, or molecules for covalent compounds.) You can also find the mass of a mole of a compound by calculating the gram formula mass (AKA molar mass of the compound).

Show all work on separate paper: (Hint: The gram formula masses of these compounds are on your "counting atoms \& Gram Formula Mass" assignment.)

1. Find the number of moles in each of the following masses. Answer to the correct amount of sig figs.
a. 64.1 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
b. 78.1 g of CaCl_{2}
c. 546 g of $\mathrm{K}_{2} \mathrm{SO}_{3}$
d. 35.2 g of $\mathrm{H}_{2} \mathrm{O}_{2}$
2. Find the mass of each of the following compounds given the quantity in moles:
a. $\quad 1.22 \mathrm{~mol}$ potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$
b. 2.44 mol Potassium nitrate $\left(\mathrm{KNO}_{3}\right)$
c. 14.5 mol aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$
d. $9.37 \times 10^{-2} \mathrm{~mol}$ copper(II) nitrate $\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)$
3. Find the number of moles:
a. 3.01×10^{23} ammonium bromide particles $\left(\mathrm{NH}_{4} \mathrm{Br}\right)$
b. 8.08×10^{22} molecules of $\mathrm{C}_{2} \mathrm{H}_{6}$
c. 7.41×10^{23} sodium chloride (NaCl) formula units.
d. 200.0 g sodium chloride (NaCl)
4. Find the number of particles, molecules, or formula units:
a. $\quad 1.004$ mol sodium acetate $\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$
b. 2.5 mol potassium sulfite $\left(\mathrm{K}_{2} \mathrm{SO}_{3}\right)$
c. 94.0 g NaCl formula units
d. $69.45 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$
