Balance the following chemical reactions and identify the mole ratios.

1) NaBr + Ca(OH)₂
$$\rightarrow$$
 CaBr₂ + NaOH

What type of reaction: _____

Mole ratios:

mol NaBr	mol CaBr ₂	mol NaBr	mol CaBr ₂
mol Ca(OH) ₂	mol NaBr	mol NaOH	mol Ca(OH) ₂
mol Ca(OH) ₂	mol NaBr	mol NaOH	mol Ca(OH) ₂
mol NaBr	mol CaBr₂	mol NaBr	mol CaBr ₂
mol Ca(OH) ₂	mol NaOH	mol CaBr ₂	mol NaOH
mol NaOH	mol Ca(OH) ₂	mol NaOH	mol CaBr₂

 $\underline{\qquad} \mathsf{NH}_3 + \underline{\qquad} \mathsf{H}_2 \mathsf{SO}_4 \rightarrow \underline{\qquad} (\mathsf{NH}_4)_2 \mathsf{SO}_4$ 2)

What type of reaction: _____

Mole ratios: (There should be 6 ratios)

 $\underline{\qquad} Pb + \underline{\qquad} H_3PO_4 \rightarrow \underline{\qquad} H_2 + \underline{\qquad} Pb_3(PO_4)_2$ 3)

What type of reaction: ______

Mole ratios:

- a. What are the mole ratios between lead and lead (II) phosphate?
- b. What are the mole ratios hydrogen and phosphoric acid?
- c. What is the mole ratio between phosphoric acid and lead (II) phosphate?

Answer the following questions. Make sure you balance the equation FIRST.

- 4) Given this equation: $N_2 + H_2 \rightarrow NH_3$, write the following molar ratios: a. N_2 / H_2

 - b. N_2 / NH_3
 - c. H_2 / NH_3
- 5) Given the following equation: $H_2 + S_8 \rightarrow H_2S$, write the following molar ratios:
 - a. H_2 / H_2S
 - b. H_2 / S_8
 - c. H_2S / S_8

6) Answer the following questions for this equation: $H_2 + Q_2 \rightarrow H_2O$

- a. What is the H_2 / H_2O molar ratio?
- b. If you had 20.0 moles of H_2 on hand and plenty of O_2 , how many moles of H_2O could you make?
- c. What is the O_2 / H_2O molar ratio?
- d. Suppose you had 20.0 moles of O_2 and enough H_2 , how many moles of H_2O could you make?
- 7) Use this equation: $N_2 + H_2 \rightarrow NH_3$, for the following problems:
 - a. If you used 1.0 mole of N_2 , how many moles of NH_3 could be produced?
 - b. If 10.0 moles of NH_3 were produced, how many moles of N_2 would be required?
 - c. If 3.00 moles of H_2 were used, how many moles of NH_3 would be made?
 - d. If 0.600 moles of NH_3 were produced, how many moles of H_2 are required?