\qquad

Balance the following chemical reactions and identify the mole ratios.

1) \qquad $\mathrm{NaBr}+$ \qquad $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \ldots \mathrm{CaBr}_{2}+$ \qquad NaOH

What type of reaction: \qquad
Mole ratios:

mol NaBr	mol CaBr_{2}	mol NaBr	$\mathrm{mol} \mathrm{CaBr}_{2}$
mol $\mathrm{Ca}(\mathrm{OH})_{2}$	mol NaBr	mol NaOH	$\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}$	mol NaBr	mol NaOH	mol $\mathrm{Ca}(\mathrm{OH})_{2}$
mol NaBr	mol CaBr_{2}	mol NaBr	mol CaBr_{2}
mol $\mathrm{Ca}(\mathrm{OH})_{2}$	mol NaOH	mol CaBr_{2}	mol NaOH
mol NaOH	$\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}$	mol NaOH	mol CaBr_{2}

2) \qquad $\mathrm{NH}_{3}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

What type of reaction: \qquad
Mole ratios: (There should be 6 ratios)
3) \qquad $\mathrm{Pb}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

What type of reaction: \qquad
Mole ratios:
a. What are the mole ratios between lead and lead (II) phosphate?
b. What are the mole ratios hydrogen and phosphoric acid?
c. What is the mole ratio between phosphoric acid and lead (II) phosphate?

Answer the following questions. Make sure you balance the equation FIRST.
4) Given this equation: \qquad $\mathrm{N}_{2}+$ \qquad $\mathrm{H}_{2} \rightarrow$ \qquad NH_{3}, write the following molar ratios:
a. $\mathrm{N}_{2} / \mathrm{H}_{2}$
b. $\mathrm{N}_{2} / \mathrm{NH}_{3}$
c. $\mathrm{H}_{2} / \mathrm{NH}_{3}$
5) Given the following equation: \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{S}_{8} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{~S}$, write the following molar ratios:
a. $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{~S}$
b. $\mathrm{H}_{2} / \mathrm{S}_{8}$
c. $\mathrm{H}_{2} \mathrm{~S} / \mathrm{S}_{8}$
6) Answer the following questions for this equation: \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$
a. What is the $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ molar ratio?
b. If you had 20.0 moles of H_{2} on hand and plenty of O_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ could you make?
c. What is the $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$ molar ratio?
d. Suppose you had 20.0 moles of O_{2} and enough H_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ could you make?
7) Use this equation: ___ $\mathrm{N}_{2}+{ }_{C} \mathrm{H}_{2} \rightarrow$ __ NH_{3}, for the following problems:
a. If you used 1.0 mole of N_{2}, how many moles of NH_{3} could be produced?
b. If 10.0 moles of NH_{3} were produced, how many moles of N_{2} would be required?
c. If 3.00 moles of H_{2} were used, how many moles of NH_{3} would be made?
d. If 0.600 moles of NH_{3} were produced, how many moles of H_{2} are required?

