\qquad

The pH of a solution indicates how acidic or basic that solution is.
pH range of $0-7$ acidic

$$
\begin{aligned}
7 & \text { neutral } \\
7-14 & \text { basic }
\end{aligned}
$$

Since $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ at $25^{\circ} \mathrm{C}$, if $\left[\mathrm{H}^{+}\right]$is known, the $\left[\mathrm{OH}^{-}\right]$can be calculated and vice versa.

$$
\begin{array}{ll}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & \text {So if }\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{M}, \mathrm{pH}=6 . \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] & \text {So if }\left[\mathrm{OH}^{-}\right]=10^{-8} \mathrm{M}, \mathrm{pOH}=8 . \\
\text { Together, } \mathrm{pH}+\mathrm{pOH}=14 .
\end{array}
$$

Complete the following chart.

	$\left[\mathrm{H}^{+}\right]$	pH	$[\mathrm{OH}]$	pOH	Acidic or Basic
1.	$1 \times 10^{-5} \mathrm{M}$	5	$1 \times 10^{-9} \mathrm{M}$	9	Acidic
2.		7			
3.			$1 \times 10^{-4} \mathrm{M}$		
4.	$1 \times 10^{-2} \mathrm{M}$			11	
5.					
6.					
7.					
8.	12				
9.					
10.					

pH \& pOH Continued

Calculate the pH of the solutions below. (Be careful, some of the solutions are basic.)

1. 0.01 M HCl
2. 0.0010 M NaOH
3. $0.050 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
4. 0.030 M HBr
5. 0.150 M KOH
