\qquad
\qquad
Remember that you can solve for the pH using the following equation: $\mathrm{pH}=-\log \left[\mathrm{H}_{\mathbf{3}} \mathrm{O}^{+}\right]$
If you do not know the concentration (molarity, M) then remember: Molarity $(M)=\frac{\text { mol }}{\text { Liter }}$ Find the pH of the following acidic solutions:

1. A 0.001 M solution of HCl (hydrochloric acid).
2. A 0.09 M solution of HBr (hydrobromic acid).
3. A $1.34 \times 10^{-4} \mathrm{M}$ solution of hydrochloric acid (HCl).
4. A $2.234 \times 10^{-6} \mathrm{M}$ solution of HI (hydroiodic acid).
5. A $7.98 \times 10^{-2} \mathrm{M}$ solution of HNO_{3} (nitric acid).
6. 12 L of a solution containing 1 mole of hydrochloric acid (HCl).
7. 735 L of a solution containing 0.34 moles of nitric acid $\left(\mathrm{HNO}_{3}\right)$.
8. 1098 L of a solution containing 8.543 moles of hydrobromic acid (HBr).
9. 660 L of a solution containing .0074 moles of hydrochloric acid (HCl).
10.120 mL of a solution containing 0.005 grams of hydrochloric acid (HCl).
11.1.2 L of a solution containing 5.0×10^{-4} grams of hydrobromic acid (HBr).
12.2.3 L of a solution containing 4.5 grams of nitric acid $\left(\mathrm{HNO}_{3}\right)$.
13.792 mL of a solution containing 0.344 grams of hydrochloric acid (HCl).
14.100 mL of a solution containing 1.00 grams of nitric acid $\left(\mathrm{HNO}_{3}\right)$..
15.8.7 L of a solution containing 1.1 grams of nitric acid $\left(\mathrm{HNO}_{3}\right)$.
10. 1.5 L of a solution containing 5.6 grams of hydroiodic acid (HI).
17.10.7 L of a solution containing 0.01 grams of hydrochloric acid (HCI).
