Part 1: Fill in the following diagram labeling the different ways that phases can change.

Part 2: Define the following terms relative to phase changes.

7.	Specific Heat:
8.	Heat of Fusion:
9.	Heat of Vaporization:

Part 3: Fill in the following values for WATER (in Joules): (#10-14)

Specific Heat of ICE	Specific Heat of WATER	Specific Heat of STEAM	Heat of Fusion for H ₂ O	Heat of Vaporization for H ₂ O
10)	11)	12)	13)	14)

Part 4: Label the various portions of the "Phase Change of Water Graph" with the appropriate terms from Part 1.

16. Color the line that represents the heat of vaporization with a highlighter (Color Key

#17-19 are phases, #20-25 are phase changes terms (use chart above)

Looking at the graph above, what is happening to the particles at the molecular level (A, B, & C)?

A – Solids:	B - Liquids:	C – Gases:

Phase Change Formulas				
For Solid to Solid:	heat in calories = (mass in grams) x (specific heat of solid) x (Δ T)			
For Freezing and Melting:	heat in calories = (mass in grams) x (heat of fusion)			
For Liquid to Liquid:	heat in calories = (mass in grams) x (specific heat of liquid) x (Δ T)			
For boiling and condensing:	heat in calories = (mass in grams) x (heat of vaporization)			
For Steam to Steam:	heat in calories = (mass in grams) x (specific heat of gas) x (ΔT)			

Part 5: Solve the following calculations related to phase change:

26. How much heat is required to warm 275 g of water from 76 °C to 87 °C?

27. How much heat is required to warm -19 °C ice to 0 °C ice if you have a 250 gram sample?

28. How much heat would be required to change the 0 °C ice from # 27 to 0 °C liquid water?

- 29. How much heat is necessary to change a 52.0 g sample of water at 33.0 °C into steam at 110.0 °C? This problem requires several steps since temperature changes and a phase change takes place. Use the hints to solve.
 - a. Solve for the heat required to increase the water temperature from 33.0 °C to 100.0 °C. Stop here because the water will change phase at this temperature.
 - b. Solve for the heat required to change the water into steam (no change in temp).
 - c. Calculate the heat required to change the temperature of the steam from 100.0 °C to 110.0 °C.
 - d. To get the heat required for the whole process, add the calculated heats from above.

30. In a household radiator, 1000 g of steam at 100 °C condenses (changes from gas to liquid at the same temp). How much heat is released in this phase change? (+ = heat gained, - = heat lost)

31. A container of water is heated from 25.0 °C to 36.4 °C by absorbing 6,400 Joules of heat energy from a hot plate. What is the mass of the water?

32. How much heat is necessary to change a 100 g ice cube at -7 to steam at 114 °C? (You will have to go through (1) heating -7°C ice to 0°C ice, (2) go through the heat of fusion to turn 0°C ice into 0°C water, (3) heat 0°C water to 100°C water, (4) go through the heat of vaporization to turn 100°C water into 100°C steam, and (5) heat 100 °C steam to 114 °C steam. Lastly, add all the heat values from the five steps to solve for the total heat.)

33. How much heat is released when 25 g of 110 °C steam condense to 95 °C water?