Important infor	mation:	Substance	Specific Heat		
Substance	Heat of Fusion (H _f)	Heat of Vaporization (H_v)	H ₂ O _(s)	2.108 J/g°C	
Water	334 J/g	2260 J/g	H ₂ O _(I)	4.186 J/g⁰C	
Phase Change of Water			H ₂ O _(g)	1.996 J/gºC	
100 C	-	$Q = mH_v$	$Q = mc\Delta T$		
Temp. 0 C	$Q = mH_f$ $Q = mc\Delta T$ $Q = mc\Delta T$		Phase Change Calculations: Evert time you change to a different line segment, you will be required to use a different formula with the appropriate specific heat and heat of fusion or heat of vaporization.		
	Increasing H	→ Heat (+Q)			

- 1. What heat is required to turn change 100 grams of 75°C water to 110°C steam? (4 steps)
 - a. Step 1: Calculate the heat (Q) required to heat 75°C water to 100°C water.
 - b. Step 2: Calculate the heat (Q) required to vaporize the 100°C water to 100°C steam.
 - c. Step 3: Calculate the heat (Q) required to heat 100°C steam to 110°C steam.
 - d. Step 4: Add all the steps together to determine the total heat to change 75°C water to 110°C steam.

- 2. What heat is required to turn 55 grams of -12°C ice to 85°C water?
 - a. Step 1: Calculate the heat (Q) required to heat -12°C ice to 0°C ice.
 - b. Step 2: Calculate the heat (Q) required to change the 0°C ice to 0°C water.
 - c. Step 3: Calculate the heat (Q) required to change 0°C water to 85°C water.
 - d. Step 4: Add all the steps together to determine the total heat to change -12°C ice to 85°C water.

- 3. What heat it released when 200 grams of 105°C steam condenses to 54°C water?
 - a. Step 1: Calculate the heat (Q) required to cool 105°C steam to 100°C steam.
 - b. Step 2: Calculate the heat (Q) required to condense the 100°C steam to 100°C water.
 - c. Step 3: Calculate the heat (Q) required to change 100°C water to 54°C water.
 - d. Step 4: Add all the steps together to determine the total heat to change 105°C steam to 54°C water.

The previous page was practice that we did together, this page will be removed and we will grade it for a stamp. You *must receive >66.6 % to earn the stamp.*

1. You have 82 grams of -7° ice. How much heat will be needed to turn that ice into 112°C steam? (I suggest you break this problem apart into steps.)

2. 115 grams of 125°C steam is condensed to 50°C water. How much heat is released in this process?

3. 25 grams of -5°C ice is heated and melts to form 40°C water. How much heat was absorbed?