Specific Heat Problems Name M. Sudburg Fey Block Date

$$Q = mc\Delta T$$
 $c = \frac{Q}{m\Delta T}$ $m = \frac{Q}{c\Delta T}$ $\Delta T = \frac{Q}{cm}$

q = heat energy, m = mass in grams, and T = temperature in °C Remember, $\Delta T = (T_{final} - T_{initial})$.

Show all work and proper units.

1. A 15.75-g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from 25°C DT=150°C to 175°C. Calculate the specific heat capacity of iron.

$$Q = m \cdot c \cdot \Delta T \qquad s \circ C = \left(\frac{Q}{(m \cdot \Delta T)}\right)$$
$$c = \frac{1086.75J}{(15.756 \cdot 150^{\circ})} = 0.46 \frac{J}{9} \cdot c$$

- 2. How many joules of heat are needed to raise the temperature of 10.0 g of aluminum from 22° C to 55° C, if the specific heat of aluminum is 0.90 J/g°C?
 - $Q = m \cdot c \cdot AT \qquad Q = (10.0g) \cdot (0.90 \frac{T}{g^{*}c}) \cdot (33^{*}c)$ (7 = 297J)
- 3. To what new temperature will a 50.0 g piece of glass be raised to if it absorbs 5275 joules of heat and its specific heat capacity is $0.83 \text{ J/g}^\circ\text{C}$? The initial temperature of the glass is 20.0°C .

$$Q = m \cdot (\cdot \Delta T = 0) \Delta T = \frac{Q}{m \cdot c} = \frac{5275 J}{(50.09 \cdot 0.83\frac{3}{92})} = 127.1^{\circ}C$$

if the ΔT was $127.1^{\circ}C$ and it "changed" from T_{i} of 20.0°C. Then $T_{f} = 147.1^{\circ}C$

4. Calculate the heat capacity of a piece of wood if 1500.0 g of the wood absorbs 6.75×10^4 joules of heat, and its temperature changes from $32^{\circ}_{T_{1}}$ C to $57^{\circ}_{T_{2}}$ C. $\Delta T = 25^{\circ}_{T_{2}}$

So
$$C = \frac{Q}{m \cdot \Delta T} = \frac{67,500 \text{ J}}{(1500.0 \text{ J} \cdot 25\%)} = 1.8 \frac{J}{g} \cdot c$$

100 mL water = 100.0 g Water

5. 100.0 mL of 4.0°C water is heated until its temperature is 37°C. If the specific heat of water is 4.186 J/g°C, calculate the amount of heat energy needed to cause this rise in temperature.

$$Q = M \cdot C \cdot \Delta T = 100.0 g \times 4.186 \frac{J}{g \cdot c} \cdot 33\% = [3, 8]3.8 J$$

[3, 814 J

AT: 130 °C

6. 25.0 g of mercury is heated from 25°C to 155°C, and absorbs 455 joules of heat in the process. Calculate the specific heat capacity of mercury.

$$Q = m \cdot c \cdot AT$$
 $C = \frac{Q}{m \Delta I} = \frac{455 J}{(25.0g \cdot 130^{\circ}c)} = 0.14 \frac{J}{g \cdot c}$ $0.14 \frac{J}{g \cdot c}$

7. What is the specific heat capacity of silver metal if 55.00 g of the metal absorbs 47.3 **calories** of heat and the temperature rises 15.0°C? ΔT=15°C We don't Know T; or Tf bot we know how much it rises. So that is

$$Q = M \cdot C \cdot \Delta T$$
 So $C = \frac{Q}{M \cdot \Delta T} = \frac{47.3 \text{ cal}}{(25.0 \text{ g} \times 15^{\circ} \text{C})} = 0.126 \frac{\text{cal}}{\text{g} \cdot \text{c}}$

Calories are also a unit for Energy... Just make sure your units cancel/match.

8. If a sample of chloroform is initially at 25° C, what is its final temperature if 150.0 g of chloroform absorbs 1000.0 **joules** of heat, and the specific heat of chloroform is 0.96 J/g°C?

C. AT
$$\Delta T = \frac{Q}{MC} = \frac{1000.0 \text{ J}}{(150.0 \text{ g} \cdot 0.94)^{\text{J}}} = 6.94 ^{\circ} ($$

Q: m.