Total Resistance

Resistors in Series	As you add resistors in series, you increase
$R_{\text {total }}=R_{1}+R_{2}+R_{3} \ldots$	resistance. Simply add the amounts together.

Example: Calculate the total resistance of this circuit.
 $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \ldots$
 $\mathrm{R}_{\mathrm{T}}=10+12+15$
 $\mathrm{R}_{\mathrm{T}}=37 \Omega$

Resistors in Parallel

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \ldots
$$

Example: Calculate the total resistance of this circuit.
$\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\ldots$
$\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{10}+\frac{1}{12}+\frac{1}{15}=.1+.083+.067$
As you add resistors in series, you open more paths for the electricity to flow, increasing total current, and decreasing total resistance. For resistors in paral-
$\frac{1}{\mathrm{R}_{\mathrm{T}}}=.25 \quad \mathrm{R}_{\mathrm{T}}=\frac{1}{.25}=4 \Omega$ lee, the total resistance is always less than the smallest resistor.

1. These resistors are in: SerieS
2. What is $R_{\text {total }}$ from A to C ? 16Ω
3. What is $\mathrm{R}_{\text {total }}$ from B to D ? 20Ω

4. Calculate the total resistance. $R_{T}=28 \Omega$
5. Calculate total voltage.

12 V
7. Calculate total current.
$I=\frac{V}{R}=\frac{12 \mathrm{~V}}{28} \Omega=0.43 \mathrm{Amps}$

8. Calculate the total resistance.

$$
\left(\frac{1}{8}\right)+\left(\frac{1}{20}\right)=\frac{1}{R_{T}}=0.175^{-1}=5.7 \Omega
$$

9. How does $\mathrm{R}_{\text {total }}$ compare with the individual resistors?

R_{T} is always smaller than
Resistor in parallel.
10. Why? I (paths $)=$ less R
more R
11. Calculate and label the total resistance for each pair of resistors in series.
12. Calculate the total resistance for the two parallel branches.

$$
\frac{1}{8}+\frac{1}{12}=(0.208)^{-1}=4.8 \Omega
$$

2Ω
15. If one of the resistors is removed, $\mathrm{R}_{\text {total }}=4 \Omega$
16. You are given four 100Ω resistors.
A. If in series $R_{\text {total }}=400 \Omega$
B. If in parallel $R_{\text {total }}=\frac{1}{100}+\frac{1}{101}+\frac{1}{100}+\frac{1}{100}=\left(\frac{4}{100}\right)^{-1}=\frac{100}{4}=25 \Omega$
17. Without calculating, you know that $\mathrm{R}_{\text {total }}$ must be less than:

18. Calculate $\mathrm{R}_{\text {total }}$.

21. What is the equivalent resistance of the parallel resistors?

22. Calculate $\mathrm{R}_{\text {total }}$ for all three resistors. $200+100=$

300Ω

