\qquad

Write the formula in the box that is a result of the row intersecting the column. Remember that a polyatomic ion must stay intact and go in parentheses if a number gets criss-crossed down to it. You also need to reduce if you can.

	Cl^{1+}	O^{2-}	N^{3}	OH^{+}	$\mathrm{NO}_{3}{ }^{1}$		$\mathrm{SO}_{4}{ }^{2}$	$\mathrm{PO}_{4}{ }^{\text {a }}$
H^{+}	HCl	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{~N}$	$\mathrm{H}(\mathrm{OH}) \times \mathrm{H}_{2}$	HNO_{3}	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{3} \mathrm{P}_{4}$
Na^{+}	NaCl	$\mathrm{Na}_{2} \mathrm{O}$	Na_{3}	NaOH	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Na, Pay
Mg^{2+}	MgCl_{2}	m_{g}	m_{93}	$\mathrm{mg}_{\mathrm{g}(0)_{2}}$	m_{9}	maCO_{3}		
K^{+}	KC	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{K}_{3} \mathrm{~N}_{2}$	KOH	kNO_{3}	$\mathrm{K}_{2} \mathrm{CO}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	
Al^{3+}	AlCl_{3}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	AIN	$\left.\mathrm{Al}^{(\mathrm{OH}}\right)^{3}$	$\left(\mathrm{NO}_{3}\right)_{3}$	$A_{2}(0,0)$,	$\mathrm{Al}_{2}(50$	APO_{4}
Ca^{2+}	CaCl_{2}	$\mathrm{Ca}_{4}{ }^{\text {d }}$	$\mathrm{Ca}_{3} \mathrm{~N}_{2}$	(OH$)^{2}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}{ }_{2}\right.$	Ca	Cas	
NH_{4}^{+}	$\mathrm{NH}_{4} \mathrm{C}$	$(\mathrm{NH})_{2} \mathrm{O}$	$(\mathrm{NH})_{3} \mathrm{~N}$	NH, OH	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\left(\mathrm{NH}_{2} \mathrm{CO}_{3}\right.$	$(\mathrm{NHH})_{2} \mathrm{SO}_{4}$	
Pb^{2+}	PbCl_{2}	PbO	$\mathrm{Pb}, \mathrm{N}_{2}$	$\mathrm{Pb}_{\mathrm{L}}(\mathrm{OH})_{2}$	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	PbCO_{3}	PbSO	
Pb^{4+}	PbCl_{4}	PbO_{2}	$\mathrm{Pb}_{3} \mathrm{~N}_{4}$	$\mathrm{Pb}_{6}(\mathrm{OH})_{4}$	P(No	Pb (0, $\mathrm{c}_{2}^{\text {cia }}$	Pb(Sod)	
Fe^{2+}	FeCl_{2}	FeO	${ }_{5} \mathrm{~N}_{2}$	$\mathrm{Fe}(\mathrm{OH})_{2}$	Fe($\mathrm{N}^{\text {a }}$	FeCO_{3}	FeSO_{4}	$\mathrm{Fe}_{3}\left(\mathrm{~Pa}_{4} \mathrm{l}_{2}\right.$
Fe ${ }^{3}$	FeCl_{3}	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Fen	$\mathrm{Fe}(\mathrm{OH})_{3}$	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)^{\prime}$	$\overline{e r}_{2}(10)_{3}$	$\mathrm{F}_{2} \mathrm{SO}_{2} \mathrm{O}_{3}$	FepO4

