Write the formula in the box that is a result of the row intersecting the column. Remember that a polyatomic ion must stay intact and go in parentheses if a number gets criss-crossed down to it. You also need to reduce if you can.

	Cl ¹⁻	O ²⁻	N ³⁻	OH ¹⁻	NO ₃ ¹⁻	CO ₃ ²⁻	SO ₄ ²⁻	PO ₄ ³⁻
H⁺	HCI	H20	H ₃ N	$H(0H)$ or H_2O	HNO ₃	H ₂ CO ₃	H2504	H ₃ PO ₄
Na⁺	Na Cl	NazO	NasN	NaOH	Na N03	Na _z CO ₃	NazSO4	Na, POy
Mg ²⁺	M_gCl_z	reduced Mg()	Mg3 N2	Mg(OH)a	Mg (NO3)2	reduced MgCO3	reduced MgSOy	Mg3(P04)2
K ⁺	KCI	K20	K3 N2	KOH	KN03	K2(03	K2504	KzPOy
Al ³⁺	AICI3	Al ₂ O ₃	AIN reduced	Al (0H)3	Al (NO3)3	Al ₂ ((03)3	Alz(504)3	AIPO4
Ca ²⁺	CaClz	reduced CaO	Ca ₃ N ₂	Ca(0H)2	Ca(NO3)2	Ca(O ₃	reduced Ca 504	Ca3(PO4)2
NH ₄ ⁺	NHy CI	$(NH_{y})_{z}\bigcirc$	(NH4)3 N	NHyOH	NHy NO3	$(NH_4)_2 CO_3$	(NHy)2504	(NHy)3 PO4
Pb ²⁺	PbClz	reduced PbO	Pb3N2	Pb(OH)2	Pb(NO3)2	reduced Pb CO3	Pb SO4	Pb3 (904)2
Pb ⁴⁺	PbCly	PbO ₂	Pb 3 N4	Pb (OH)4	Pb(ND3)4	reduced Pb((03)2	reduced Pb(804)z	Pb3(504)4
Fe ²⁺	FeClz	reduced Fe O	Fe3N2	Fe (0H)2	Fe (NO3)2	FeCO3	reduced Fe SO4	Fe3(P04)2
Fe ³⁺	FeCls	Fe203	Fe N reduced	Fe (0H)3	Fe(NO3)3	Fez ((03)3	Fez(504)3	FePO4